Optimization of the formation of embedded multicellular spheroids of MCF-7 cells: How to reliably produce a biomimetic 3D model.

نویسندگان

  • Wenli Zhang
  • Caibin Li
  • Bruce C Baguley
  • Fang Zhou
  • Weisai Zhou
  • John P Shaw
  • Zhen Wang
  • Zimei Wu
  • Jianping Liu
چکیده

To obtain a multicellular MCF-7 spheroid model to mimic the three-dimensional (3D) of tumors, the microwell liquid overlay (A) and hanging-drop/agar (B) methods were first compared for their technical parameters. Then a method for embedding spheroids within collagen was optimized. For method A, centrifugation assisted cells form irregular aggregates but not spheroids. For method B, an extended sedimentation period of over 24 h for cell suspensions and increased viscosity of the culture medium using methylcellulose were necessary to harvest a dense and regular cell spheroid. When the number was less than 5000 cells/drop, embedded spheroids showed no tight cores and higher viability than the unembedded. However, above 5000 cells/drop, cellular viability of embedded spheroids was not significantly different from unembedded spheroids and cells invading through the collagen were in a sun-burst pattern with tight cores. Propidium Iodide staining indicated that spheroids had necrotic cores. The doxorubicin cytotoxicity demonstrated that spheroids were less susceptible to DOX than their monolayer cells. A reliable and reproducible method for embedding spheroids using the hanging-drop/agarose method within collagen is described herein. The cell culture model can be used to guide experimental manipulation of 3D cell cultures and to evaluate anticancer drug efficacy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth of confined cancer spheroids: a combined experimental and mathematical modelling approach.

A critical step in the dissemination of ovarian cancer is the formation of multicellular spheroids from cells shed from the primary tumour. The objectives of this study were to apply bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer spheroids in vitro and simultaneously to build on a mathematical model describing the growth of multicellular spheroids in these b...

متن کامل

Sialylation transmogrifies human breast and pancreatic cancer cells into 3D multicellular tumor spheroids using cyclic RGD-peptide induced self-assembly

Multicellular tumor spheroids (MTS) have been at the forefront of cancer research, designed to mimic tumor-like developmental patterns in vitro. Tumor growth in vivo is highly influenced by aberrant cell surface-specific sialoglycan structures on glycoproteins. Aberrant sialoglycan patterns that facilitate MTS formation are not well defined. Matrix-free spheroids from breast MCF-7 and pancreati...

متن کامل

Implication of necrosis-linked p53 aggregation in acquired apoptotic resistance to 5-FU in MCF-7 multicellular tumour spheroids.

Three-dimensional (3D) multicellular tumour spheroids (MTS) have been used as an in vitro model of solid tumours for drug resistance studies because they mimic the growth characteristics of in vivo tumours more closely than in vitro two-dimensional (2D) culture of cancer cell lines. As observed in solid tumours, MTS exhibits a proliferation gradient with outer regions consisting of proliferatin...

متن کامل

Modeling Breast Acini in Tissue Culture for Detection of Malignant Phenotype Reversion to Non-Malignant Phenotype

Backgrounds: Evidence is accumulating to support disruption of tissue architecture as a powerful event in tumor formation. For the past four decades, intensive cancer research with the premise of “cancer as a cell based-disease” focused on finding oncogenes or tumor suppressor genes. However, the role of the tissue architecture was neglected. Three dimensional (3D) cell cultures which can recap...

متن کامل

Role of extracellular signal-regulated kinase (ERK)1/2 in multicellular resistance to docetaxel in MCF-7 cells.

Cancer cells frequently fail to respond to chemotherapy due to acquisition of chemoresistance. Tumour cells are prone to die by necrosis when they are metabolically stressed by hypoxic and glucose depletion (OGD) due to insufficient vascularization, a common feature of solid tumours. Tumour necrosis indicates poor prognosis and emergence of drug resistance in cancer patients; however, its molec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical biochemistry

دوره 515  شماره 

صفحات  -

تاریخ انتشار 2016